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DIFFRACTION EFFECTS IN DIRECTED RADIATION BEAMS

I. Introduction and summa.

Diffraction is a fundamental characteristic of all wave fields, be it

photons, electrons, etc. The effect of difiraction is typically manifested

when an obstacle is placed in the path of a beam. On an observation screen

some distance away from the obstacle one observes a rather complicated

modulation of the time-average intensity in the vicinity of the boundary

separating the illuminated region from the geometrical shadow cast by the

obstacle.

in many applications it would be highly desirable to propagate a beam

over a long distance without an appreciable drop in the intensity. As an

example we cite the possibility of accelerating particles to ultra-high

energies by utilizing high-power laser beams. Although the accelerating

gradient in many of these schemes is extremely large, the actual distance

over which the particle and laser beams maintain an appreciable overlap is

very limited. The overlap is reduced due to the diffraction of the laser

beam and as a result the net gain in the particle energy is limited.

With the advent of high-power lasers and microwave sources,

diffraction of radiation beams with finite transverse dimensions has turned

into a problem cf special. importance. As an example, consider laser

radiation of frequency w emanating from a cavity oscillating in the

fundamental transverse Gaussian mode. How far will this beam propagate in

a turbulznce-free atmosphere? More to the point, how fast ft the fall-off

in the intpnsity of this laser beam?

The answer to this question is well-known. The scale length for the

fail -oft in intensity i!V given by the Rayleigh range, defined by

R ,0



where w is the minimum spot size, or radius, of the beam, and X = 2nc/W is

the wavelength. The minimum spot size w0 is also known as the waist of the

radiation beam. The fall-off of the beam intensity as it propagates in

space is a consequence of the fact that initially the beam was constrained

to a finite waist, wv. Diffraction then causes the beam to spread in the

lateral direction and, from energy conservation, the intensity must drop

off correspondingly. In the limit of an infinitely wide beam, w0 4 -, the

Rayleigh range is infinite, there is no diffraction and the intensity is

constant.

A natural way to propagate a beam over long distances is to increase

the Rayleigh range by employing a wider beam or shorter wavelength

radiation. Clearly the width of the beam is limited by the energy source

available for pumping the lasing medium, and short wavelength lasers

(x-rays and beyond) are not presently available. As a result, over the

past several years there has been an upsurge in research on such

fundamental topics as propagation and diffraction properties of radiation

beams. (See Ref. 2 for an earlier discussion.) Briefly, the question

being asked is: "Can diffraction be overcome?" The following is a summary

of our review of diffractionless and other directed radiation beams.

i) Electroma netic Missiles (Section IV)

Experiments indicate the possibility of generating wave packets with a

broad frequency spectrum. The high-frequency end of the spectrum

determines the furthest distance the missile can propagate, in complete

accord with our understanding of diffraction.

ii) Bessel Beams (Section V)

A Bessel beam if; a particulax, monr('chomati(. i solution of the wave

eqnal ion. Bessei beams prollagale no ftuz thet than au•;5;ian beams o. piane



waves with the same transverse dimensions and, contrary to previous

assertions, Bessel beams are not "resistant to the diffractive spreading

commonly associated with all wave propagation"°

iii) 6lectromagnetic Directed Energy Pulse Trains (Section VI)

These are particular, broad-band solutions of the wave equation. We

show that the experi..lent and the numerical studies of these pulses are

consistent with conventional diffraction theory and, contrary to previous

assertions, these pulses do not "defeat diffraction".

iv) Electromagnetic Bullets (Section VII)

Electromagnetic bullets are solutions of the wave equation which are

confined to a finite region of space in the wave-zone. The ultimate goal

of the research has been to determine the source function which leads to a

prescribed torm for the bullet in the wave-zone. Although the mathematical

framework for this has been established, no concrete example has appeared

in the literature.

Sections II and III begin with a review of basic diffraction theory

and our findings and conclusions are summarized in Section VIII.

3



II. Electromagnetic Wave Diffraction

Consider the radiation beam from a cavity of radius d. The wave

A
vector is given by k1HeA2 , corresponding to propagation predominantly in the

z direction, and the magnitude of the spread in the wave vector in the

transverse direction is denoted by Nky, with k H >> 6ki. The angular spread

of the radiation relative to the z axis is

e = &kI /kll, (2)

"On an observation screen at a distance z, the radius of the illuminated

region is given by

w = d + 9z. (3)

The first term cn the right-hand side of this expression indicates the

width of the region illuminated according to geometrical optics. Beyond

this lies the region of the geometrical shadow, and the second term in

Eq. (3) indicates the extent to which this region is illuminated due to

diffracticn of light. The distance Z over which the angular spread leads

to a fall-off in the intensity is given by d + OZ = 2d, or

z = die. (4a)

The distance Z may be regarded as the scale-length for diffractive

spreading of the beam.

As a first example, suppose the transverse distribution of intensity

in the beam is uniform. This in the case when plane waves are apeltured.

If the radius of the aperture iP , lom a undamental result of Fourier

analysis, &kid = 1. The angular spiead is therefore given by

0 = X/2rtd, where X = 2n/k H in the wavelength. For this intengity

distribution one thus finds

4



Zp - 2nd 2/X. (4b)

For the case when the transverse intensity distribution is a Gaussian,

exp(...-r2i/W), of width w , we have Ak = 1/Wo, and the angular spread of the0 0 L00

beam is on the order of 0 = X/2nw . In this case d = w and hence
0

ZC = 2nw2 /X, (4c)

which is tv.ice the Rayleigh range ZR defined in Eq. (1).

Clearly, diffraction is simply the physical manifestation of the well--

known result of Fourier analysis relating the spreads in wave vector space

with the corresponding widths in real space, 6k.•Ax. 1= for i = 1,2,3. As1 1

a result, Eq. (4a) expresses a fundamental relation which we shall make use

of repeatedly in order to interpret the results of theory and experiment on

so-called diffractionless radiation beams.



III. Diffraction Zones (Huygens' Principle)

According to Huygens' principle each point on a gi,•en wavefront acts

as a source of secondary wavelets. The field at a point P is given by the

sum over the wavelets. If t,(r)e is the amplitude on an aperture, an

approximate solution of the scalar wave equation at P is given by 3 ' 4

'p(r,*) = (iX)-1 e-it [ dS' u(r') R-I ei( R/c (5)

aperture

•hr R=2(- +(yj2 12
Ohere R =(x-x') + (y-y") 2 ] is the distance between the area

element dS' on the aperture and the point P, as shown in Fig. 1.

In the Fresnel approximation the binomial expansion of R may be used

to simplify Eq. (5) to

f II
2x 2+

*p (ixz)- ei z- )c Ids, u(x',,y ) eý

aperture

(6)

For plane waves incident on an aper'ure with linear dimension d, there

are two physically interesting limits for approximating Eq. (6).

i) Frautihofer Diffraction (Far-Field or Wave-Zone Region)

If

z >> d2X (7)

one may neglect the quadiatic t1 rms in th,- exponent of Eq. (6) and the

wavelets tiont the crtiite wavotroent at the apeiture coiitrbihute !o the field

at P. Til the Fia linhoofet legion 4i i<, ; .simply thi FOtliot l tlarlt;totl! ot lh,

;a`IIj i t ride att tht- d.i ttI aiT in ;tpIe , 'l t tit t

I11 t I he t hu imiT

d, X



it is necessary to retain the quadratic terms in the exponent of Eq. (6)

and the wavelets from a limited portion of the wavefront at the aperture

make the dominant contribution to the field at P. In this case, the

integration in Eq. (6) may be taken to be over the entire z = 0 plane.

For plane waves incident on a circular aperture of radius d, Fig. 2,

making use of Eq. (5), the exact field on the axis of symmetry is given by

p ccexp(-iwt)(exp(icoz/c) - expriw(d2 + z 2) /cJ), and the intensity

•_I X qp 41p is

--- • 2 )2 I/2

I cos [&)[(d2 + z ) - z]/c). (9)

Figure 3 is a schematic plot of the intensity functiov, Eq. (9), indicating

in particular the transition between the Fresnel and the Fraunhofer

regions. Note that the intensity drops off precipitously beyond

z - 2nd2 /X, consistent with the scale-length defined by Eq. (4b).

We proceed now to examine the research on new solutions of the wave

5-20equation, with particular emphasis on their dif~fraction properties.



IV. Electromagnetic Missiles

i) Theory

Consider first the case of a field, termed a issile", which falls

off more slowly than the usual 1/R law. The inventive step is the use of a

broad frequency spectrum. Depending on the spectrum, the fall-off with R

may be as slow as desired. 7 ' 8

To appreciate the nature of this field, note that for an arbitrary

source distribution within a region A as shown in Fig. 4, the energy

delivered to a screen S, integrated over all time, is

c(S,R) f dt J'dS n (E~xB) /4 n,
_-w screen

A
where n is a unit vector normal to the screen, and F and B are the electric

and the magnetic field, respectively. For a source with a bounded

frequency spectrum, a screen of fixed area S, and for sufficiently large R,

C(S,R) -- 1iR2, according to well-known results. 2 1

The current density for t0e el, omagnetic missile described in

ARef. 7, J(r,t) (z)f(t)e , r < d, is confined to a disk of radius d,

where r - (x2 4 y2)112 is the radial coordinate and f(t) is a given

function of time. I f A(w0) arid -7J(A.) denote the Four oe ttran;f ormis of the

,Iector potential and the cu'ii ent density respectively, then

SA(c) - Id " J()oexp(itRc)/cR iýý a !-olut ion of the wave equation. 2 I1 the

Aprescnt ca;e, J( W) - 6Z) f(W) 1, and the ve 10pto t oelt i il )I h the axis; of

symme t I y i' g iiven hy

S1 1/1
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Making use of this expression for A(w), the Poynting flux along the z axis

A
integrated over all time, U(z) a fdt ez.(ExB)/4n, is given by

2[ Z 2ý 2 1/2 . 2( 1 o ý-( 2 +d2 )1/2_ IU = c- 2I +zz ) 'J dw1 T(W) ~l- cs{jz+d) -i)
0

(10)

Note the resemrHancp between Eq. (9) and the integrand of Eq. (10).

Equation (9) is for a monochromatic field and is based on Huygeris-Fresnel

principle while Eq. (10) is obtained from a rigorous solution of the full

wave equation.

In the limit z -*in Eq. (10), for a fixed frequency w,

cos O/c)( te 4-d2)1 z) cos(2 /2cE( ) + 1, and the integrand tends to

zero. Referring to Fig. 3, this means that the contribution of this

frequency lies in the far-field region and is thus negligible. At a given

large z we can, therefore, write

2 2

U -- J dw f(W)~ 11 - COS((,C 2 /2c 2ý)] L [ dw F(Q))
2cz/d2 2cz/d2

We see that the rosýt important conti ibution is f ion the high frequency end

of the spectrum, 0l1 which the gilen point l 1iesý in the rieai- field,

F'esne1, zone. The con t ibut ions f oin all the lower irequency components

will have decayed to negligible values before reaching the given z!. While

the eventtual fall off of any frequency component i.,: ai; I/z, the fall off of

the ti me ointegrated Poynting filux Io! Ht he wavt pa(ill l t(I )t.d> n, boy

lapi d Iy' ( ) ecay tko w .s - - dO c xmpI * WW i iP ý;u(0

"with a I (tquen V (p';l

' )* I t:,(0



where c > 0. For this spectrum the time-integrated Poynting flux falls off

as U - I/z The fall-off can thus be as slow as desired by taking the

limit c 4 0. The limit, however, corresponds to a frequency spectrum from

a source with infinite energy. The function f(t) is symmetric with respect

to t 4 -t. Evaluating the inverse Fourier transform of (0(w), one finds

that f(t)- t(2c-3) 1 4 exp(-w 0t) for t >> 1/w o For c > 1/2 and t << 1/w« 0

f(t) -. constant. However, for the more interesting case of c < 1/2, f(t) 4

Es-i/2
t when t << 11w•0 , indicating a mild singularity,

ii) Experiment (Electromagnetic Missiles)

The difficulties involved in an experimental study of electromagnetic

missiles stem from the need to generate pulses with extremely short rise-
9

times and suitably--shaped wavefronts. An antenna was used to generate a

"pure" spherical wave which formed the primary pulse and the field

reflected from a parabolic dish of radius 2 ft formed the secondary pulse.

The pulses were detected by a specially-designed sensor. The primary pulse

2wa' found to fall off as l/z , the energy decaying by 1/16 when the sensor

was moved from 4 ft to 16 ft from the source. This was because the

antenna, being a point source, generated spherical wavefronts. The pulse

ref-'ected from the parabolic dish was found to resemble that of a circular

disk, simil-r to that studied earlier in this section. Over- the same

distance, the energy in this electromagnetic missile was found to decay by

just under 1/2. Without a precise knowledge of the frequency spectrum it

is not possible to make a quantitati,,e analysis of thi,; experiment. Rough

estimates indicate that the scale length for the fall oil of the intensity

of the missi 1k is indeed compatible with the diIft action scale length

7, .. 2nd i/)X, where d = 2 ft is the tadiu; of the ieflect-inp dish and A 15;

the wave ei om th for the h:tghe-,( frquencv (iD) (;Hz, in TIhe pul!se.

Iva1



These preliminary experimental results indicate that a suitably

tailored pulse-shape can be designed to have an energy-decay rate

essentially limited by the highest frequencies present in the pulse

generator, in complete accordance with the elementary notions of

diffraction of light. Propagation of a composite pulse in free space is a

dispersive process. As the beam propagates, the lowest frequency

components diffract away first.

II



V. Bessel Beams

i) Theory

An exaripe of a so-called diffractionless electromagnetic beam is a

Bessel beam. We note that a particular solution of the scalar wave

equation

(V2  - c - a (r,t) .. 0,

is

2 n+ E

0

'p=ei(k 11z - wot)r o~ ik'O xcos+ ysine) (1

2 2 2 2for arbitrary 00 and A(O), provided 2 c + k I Here, kH and k I

denote the magnitudes of the components of the wave vector parall.el and
92 1/2

orthogonal to the z axis. respectively, and X = 2n/(k2 + k2) is the

wavelength. Since the z-dependence in Eq. (11) is separated from the x-

and y-dependence, the solution is clearly diffractionless in the sense that

the t.ime-average intensity is independent of z. I,- fact, the inten:sity is

constant for all 7 and all t.

Durninr considers the care wher:e A(O) = I (Ref. 10). In this case,

making use of the expa )sion exp,(i(:.inO) = Er Jn(Q)exp(inO), whe2re J. is the

ordinary Bessel hunction of the first kind ot order n (Ref. 22), Eq. (11)
simplifies to q= 2rnJ (k Ir)expli(kr'l - cwt))], wher e *• (x 2  t lie

radi l,] variable.
Iiak j n ,sf of the pipgi i -m. of the It (unction (Ref. 22), ('dO

.Jhow thal the "onergy" content, Jdr I J (k r,, int.gratedi over any

t.ansvel se pet i od, or lobe, is alo) : I mat, Iy the , ",anIO a_; tha. J) t he

12



central lobe. This point will be important in our interpretation cf the

diffractive properties of Bessel beams.

ii) Experiment (Bessel Beams)

A Bessel beam has an infinite number of lobes and, therefore, has

infinite energy. In the laboratory an approximation to this ideal beam is

realized by clipping the beam beyond a certain radius. The question is,

given the finite transverse size, how well is the diffractionless property

preserved.

To answer Zhis question Durnin et al. compared the propagation of a

clipped Bessel beam with a Gaussian beam. The full width at half-maximum

(FWHM) of the Gaussian was taken to be equal to the FWHM of the central

lobe of the Be'ssel beam. In the experiment the on-axis intensity of each

beam vas measured along the axis of symmetry. The Bessel beam was claimed

to be "resistant to the diffractive spreading commonly associated with all

wave propagation" since its intensity was observed to remain approximately

constant for a much longer distance than the Gaussian beam. The idea of a

diffraction-free beam was further reinforced by using a geometrical optics

argument to obtain a formula for the propagation distance of central lobe

of the Bessel beanm

We shall now reconsider this comparison. The wavelength of the

radiation was X = 6328 A. For the Gaussian bean, exp(-r ), w was equal

to 0.042 mi, corresponding to a FWHM of 0.07 mm. For the Bessel beam,

J (k r), k was equal to 41 mm , corresponding to a FWHM for the central
ol I i

lobe of 0.07 mm. The beams were apertured to a radius d := 3.5 mm. The

Stoollowing ordel-of -ofagn tude discu5ss: ion is,: based oti Eqs. (2) (4); a mor:,

_gor o ,1 ao u Iy,' s i-; is,ý ptesented il r ,iho Aplt)end ix. The ang, lay r ipeadt d .ie (o

the nat.ural widti , of the Gaussia l (,) t1arieM, i Xhre

t3



form w = w + (X/2nw )z, where the first term in this expression is w

rather than d, since the energy of the Gaussian is concentrated in the

central peak.. The scale length for diffraction is the same as that given

by Eq. (4c), namely ZG 21rvI/X = 1.75 cm. The natural angular spread of
G 0

the fessel beam is 0 = kJ X/2, and Eq. (3) takes the furm w = d +

(k 1 X.'/2n)z, where the first term represents the radius of the aperture since

the energy in each lobe is approximately the same and they all affect the

propagatiop of the Bessel beam. The scale length for diffraction is,

therefore, given by d + (kl\/ 2 n)ZB = 2d, or ZB t 2nd/k 1X = 85 cm, which is

consistent with the experimental observation.

In the transverse plane the lobes of the Bessel beam diffract away

sequentially starting with the cutermost one. The outermost lobe diffracts

2 2
in a distance on the order of 2n /X(I, which is approximately equal to ZG.

The next lobe diffracts away after a distance on che order of 2 ZG* This

process continues until the centtal lobe, which diffracts away after a

distance -- NZG, where N denotes the number of lobes within the aperture.

in the experiment N = 50, implying a propagation distance on the order of

50ZG for the central lobe of the Bessel beam, which is c.•nsistent with the

measured value. Measurements of the on-axis intensity obviously fail to

reveal the gradual deterioration of the transverse beam profile, but the

numerical plots in Fig. 2 of Ref. 10 are consistent with this scenario.

Therefore, the Bessel beam is not "resistant to the diffractive spreading

commonly associated with all wave propagati-m", Our int erprctatI ion points

out the significance of each success;ive lobe having about the samQ energy.

The central lobe persin ý.' ad; Jo a.y z hre ale ()ff .axi', le ..mp( iiei t.nu

tfor i T: energy lo;s and hence The corpai io:n w'•t71 tlF' nar over Ca.(;v i an

beam in RCef. 1I is of lit t 1 igni'11 iCa e.

14



We note that utilizing the full width of the aperture a Gaussian beam

propagates a distance on the order of NZB; i.e., N times further than the

Bessel beam. Additionally, by appropriately curving the wavefront, nearly

all the power of the Gaussian beam can be focussed on a target of dimension

w in a distance ZB. Hence, for this purpose a Gaussian beam would be

significantly better than the Bessel beam employed by Durnin et al. (See

also Ref. 12)

15



VI. Electromagnetic Directed Enerp j Pulse Trains

i) Theory

Electromagnetic directed energy pulse trains are particular solutions
S~13

of Maxwell's equations. To discuss these, we make the change of

variables • z - ct and T = t, and transform the wave equation

2 c-2 a2/at 2)= 0,

into the form

+ .2. 2 22a -2 2

-- cc = 0.

Making the assumption

S• •(,rT~iw°/c
T = *(ý,r,¶)e , (12)

leads to the an equation for the complex envelope •,

Vi+ZU -- + - =0.

i TT c a-r 2

Here, r denotes the radial variable and Vi is the differential operator in

the plane z = constant. If ,($,rt) varies slowly compared to the

characteristic scales 1/w and c/w, the second derivative of the envelope

function may be neglected anc the wave equation reduces to

( 2 +2iwA -2 a P: 0. (13)

Equat ion (13) is an extremely useful appro-imation to the full wave

equation in a vacuum. Note that the full wave operator is of the

hyperbolic type, where.; the reduced wave opeiatoi is of the parabolic

Stype. For this i' 7son, Eq. (13) is ,;ornet ime•s refei red to as the pal abolic

appioximation to the wave equation.



A particular solution of Eq. (13) is given by

W .- itan-l(t/¶R) - (1-iT/TR)r 2 /w(20
C-- e (14a)

where C is a constant,

w - w [1 + (_[/_[ )2] (14b)

is the spot size, w-0 is the waist and

= W2 /2c2 (14c)"OR = 0

is related to the Rayleigh range ZR = w02/2c by -R = ZR/C.

Ziolkowski 1 3 - 1 5 makes use of the variables transformation

Sm--. z - ct, tj = z + ct,

in the wave equation to reduce it to the form

( 22

+4 =2 0.

Representing T' in the form

T• = q,(nl, r)e ,(15)

leads, without any approximation, to an equation for *,

I + 4i L L 0. (16)

A particular solution of Eq. (16) is given by

w 1itan 1 - R)12/W2
S= C -- e 17a)

whefte C i,; a con.stant

I'?7



911/2w °W [1 + (n/YR)Y] , (.'7 )

and

W2/c' (17c)

is related to the Rayleigh range ZR = (0,2c by rR = 2 ZR.

Some remarks on the solutions in Eqs. (14) and (17) are in order.

First, Eq. (14) is a solution of the parabolic approximation to the full

wave equation. On the other hand, Eq. (17) is an exact solution of the

full equation. Second, there is a factor-of-two difference between the

scale length c'rR in Eq. (14c) and the scale length 'OR in Eq. (17c). Third,

the solution In Eq. (17) has infinite energy. Finally, the exact solution

in Eq. (15) consists of a pulse traveling to the left which is modulated by

a plane wave moving to the right.

To examine the last two points, Eqs. (15) and (17) may be combined to

form a fundamental Gaussian pulse T k with parameter k =- w/c

k e-kr
2 /V

Tk(rzt) = e (18)k 4riiV--'(

where

1 1 i

V K - R'

A = z 4 , R + z /E,
0 0 0

--- 'ati1 z3 is a constant.1 To contotm to Ziolkos.i example., Eq. (18)

represents a pui.,se t1;veling To tho ligiht odniih iýý nw, filated by i plane

wave moving to the left. With an applopliate we ght tillic•ion, I cani be



.shown th;at •he T for all k form a complete set or basis functions, each

with total energy proportional to J'd3 .,,ITk 12 -4 . Just as in the case of

Fourier syn hesis with planc waves, a general, finite-energy pulse may be

obtain ' by superposing the various 'Tk according to a weight function F(k),

that is,

f(r,z,t) - dk Tfkk(r,z,t) F(k)

0

1. r -ks
00

= Oti( z 1 A J Tj - f dk. F (k ) e -k (19a )

where

2
s = -.i + r(19b)

z 0 + i "1

Equation (19a) indicates that f(r,z,t) is proportional to the Laplace

transform of F(k).

ii) Modified Power-.pect__rum Pulse --- Numerical Study

Ziolkowski has examined in detail the pulse corresponding to a

modified power-spectrum (MPS):

fl.), 0 < k < b/O

F(k) L 4 I• . b)
4r(a) ' (k > b/O

(2Oa)

where I'( a ) is the Gamma t unc t ion (Ret 22) and a , x, and 3 a ie a 1 i it r y

Coll-iants. Upon subs t.• .u t ing 1.q (20a) i ito Lq (VA) one obt itri

f to / 3 ( i.. )fl/f

20b

: •, r ,• t ) . ..-i .; -• ...... . . . ... ................... ........ .... :1.(;T.t



The real part of t[iis function defines the MPS pulse. The radial profile

of the SPS pulse at the pulse center, • = 0, has the form

•-" ei b W /f -br 2 /Ozo

f(r,z) -7e -hr /fe(20c) S(a + r 2! z -O 0

In the numerical studies the pulse was replicated by superposing the

fields from a planar array of discrete points, each of which was driven by

a function specified by the MPS form on some z = constant plane.15 The
W•,~e Oxl10 1 .OxlO1

parameters were: a = 1.0 cm, b = lx cm1 , cm 6.OxlO , z -

-3
1.667xi0-3, and a = 1. The spectrum waý: approximacely flat up to 200 GHz,

becoming negligible beyond 15 Triz. The pulse generated in this manner was

propagated forw:ird and compared with the exact form in Eq. (20b) at several

locations along the z axis. The minimum radius of the array required to

replicate the exact pulse form at 1, 10, 100, and 1,000 km was determined.

From Ziolkowski'r: results we estimate the corresponding radii of the

antenna to be approximately 0.5, 5, 50, and 500 m, respectively.

We shajý.l examine these results by asking: What is the scale-length for

diffraction of the "PS pulse? The pulse has a Gaussian radial. profile, as

indicated in Eq. (20c), with a width w = (f3z /b) /2= 31.6 cm and,

therefore, Ziolkowski calculates a Rayleigh range nw 2/X z 0.21 km for the
0

S15
200 GHz component. 15This, however. , is not the appropriate scale-length

for diffraction of the MP9 pulse. The coriect scale-icngth is given by

2nw ( d/X, where the antenna dimens ion, d, ailways exceeds w . The point here0 0

is that the Payleigh range based on the wai'st W , as calceulated by

iolkowý;ki , is only val id at the pulsoe c(•m te , ,I U. Awov Inmii I1

planle - T the ci e iv e wai.:t i er .E' ndilcated bvy PJq. (:,lM), onld

t ,e t 't i 1, :1 ti; Iac t i oý 11e • t j.th i t, ýh(.•' l l , I o I oljjj,,.- !~I i ý[, 11[111 a '-I

•mU



explains why the pulse propagates further than the Rayleigh range defined

in terms of w . To calculate the actual diffraction length, we note that

the perpendicular wave number (ki) spectrum given in Ref. 15 indicates that

the smallest k is on the order of 1/w 0 Hence, an estimate for the

diffraction angle is XV2nw . The width of the radiation beam given by Eq.

(3) can be written as w = d + fkX/2fl!o0 )z, where d is the radius of the array

or "antenna." The scale-length for diffraction is then simply

ZMPS = 2nw d/X. (21)

Note the similarity between the diffraction length in Eq. (21) and the

scale--length for diffraction of the Bessel beam, ZB = 2nd/kIX, derived in

Section V, subsection ii). The resemblance is a reflection of the fact

that in both cases the pulse energy is spread over the entire radius, d, of

the aperture, which is much larger than the nominal waist of the beam, w0 '

According to Eq. (21) the larger the radius of the array is, the

longer the distance of propagation of the pulse, consistent with the

numerical results. From the numerical results, the ratio ZMPS/d is equal

to 2,000 which is the same as that given by Eq. (21) provided the frequency

is 300 G[Iz. Since this frequency is well within the cutoff of the pulse

spectrum, this constitutes a persuasive indication that the MPS pulse does

not "defeat diffraction" as claimed by Ziolkowski. 4

iii) Mod if ied Power- Spec trum Pul se -- Experiment

Ziolkowsk|i et al. have performed a watel -tank experiment to

demonstrate the properties of a MPS acoustic pu . e . The pu] ( w;a!

genezated by a 6x6 crI sqtai e ariay. The MPS Wil( l viiI x, t ci,

1 4at , ., 1 ,n b -i .1 ). rim , 3 - i ( ) ) ( , z 4.. hc-:-' It I n m tid 1 . F-' oml

I(



The experiment indicated that a Gaussian pulse with an initial width equal

to 1.5 cm suffered a greater transverse spreading than the NPS pulse.

This experiment may be examined in the light of the discussion leading

to Eq. (21). The expression in Eq. (21) gives the scale--length for the

fall-off in the intensity of a pulse which is generated by an array (i.e.,

2antenna) of radius d. Since the square array is 6x6 cm , we take the

parameter d to be equal to 3 cm. Noting that the speed of sound in water

is 1.5xlO3 m/s. the wavelength of the dominant frequency in the pulse, 0.6

MHz, is X = 2.5 mm. From this, the actual diffraction scale-length ZMPS is

1.1 m. Thi!s is in good agreement with the experimental observation that

the MPS pulse propagated a distance of 1 m without significant spreading.
2

Comparing the MPS pulse generated by a 6x6 cm array with a Gaussian pulse

having a waist of 1.5 cm is inappropriate. A Gaussian beam with spot sive

equal to the array radius used in the experiment would propgate a distance

d rd 2 /X = ZMPS; i.e. as far as the MPS pulse.

We note from Eq. (21) that, in general, a Gaussian beam with an

appropriately curved wavefront and an initial spot size equal to the

antenna dimension transfers nearly all the power onto a target of dimension

w 0 in a distanice on the order of ZMpS. Such a (ausc ian beam, therefore,

transf eis mote power on the target than the ('o1 Ies;pondiliyg MPS pulý'e.

I-


